X-ray Surveys

Paul J. Green

With thanks to John Silverman, N. Brandt & G. Hasinger (ARA&A 2005), Jian Wu

Disclaimer

This review, like so many surveys, will be

- incomplete
- biased

Survey types include

KNOWN OBJECTS

- pointed sample surveys
- raster/mosaic/tiling of individual objects

SERENDIPITOUS

- deep pencil beam serendipitous
- raster/ mosaic/ tiling of 'blank sky' region
- scattered field archival
- all-sky

I'll speak only about serendipitous, extragalactic X-ray surveys from focusing telescopes, and almost exclusively about AGN

Outline

- History of large surveys
- logN-logS
- The Cosmic X-ray Background
- Survey Science Motivations
- Advantages and characteristics of X-ray selection
- Current surveys, Deep and Wide
- Multiwavelength followup
- Source types
- Science Results

Early X-ray Surveys

- Uhuru (1970-1973) [2-20 keV]
- Ariel-V (1973-1980) [0.3-40 keV]
- HEAO-1 (1977-1979) [0.2keV-10MeV]

Soft X-ray Surveys

• Einstein (1978-1981) [0.2-20 keV] aka HEAO-2, first imaging telescope

• ROSAT (1990-1999)

[0.1-2.5 keV]

Hard X-ray surveys

• ASCA (1993-2001)

[0.4-10 keV]

BeppoSAX (1996-2002) [0.1-300 keV]

Chandra and XMM-Newton Surveys

- Chandra (1999-present)
- XMM-Newton (1999-present)

Chandra Advances

10-100 fainter flux limits

small PSF: less bkg and fainter confusion limit

unambiguous source IDs

subarcsec positions

Source extent and morphology

XMM is complementary:

4_ Effective Area + larger Field-of-View Harder energy band: 0.5-20 keV

The Extragalactic log-N-logS

$$N = \rho V = \left(\frac{\Omega}{4\pi}\right) \frac{4}{3} \pi D_{lim}^3$$

but

$$L = 4\pi D_{lim}^2 S$$

SO

$$D_{lim} = \sqrt{rac{L}{4\pi \, S}}$$

therefore

$$N \propto \rho \Omega L^{\frac{3}{2}} S^{-\frac{3}{2}}$$

So the slope of the $\log N$ - $\log S$ curve should be $\frac{-3}{2}$ for a non-evolving population in an infinite, Euclidean universe!

X-ray logN-logS

Fits require a broken powerlaw. For soft band __bright=1.6±0.2, __bright=0.5±0.1, S_{break}~8_10⁻¹⁵

Cosmic Variance?

- 62 fields
- counts>20; _<400"
- typical errors shown
- No significant Cosmic Variance!
- 3C295 cluster field exposures marked: 100ksec exposure belies earlier claim of overdensity

The Cosmic X-ray Background

- 1962 rocket flight to detect X-ray emission from the Moon discovers Sco X-1 and a diffuse cosmic background radiation (Giacconi et al.)
- Uhuru and Ariel V find isotropy: implies extragalactic, and large N required if discrete (Schwartz 1980)
- HEAO-1 shows good fit w/ isothermal bremsstrahlung model kT~30keV (Marshall et al. 1980)
- Not from hot IGM gas, since expected CMB distortions not seen (Wright et al. 1994)
- Not from standard AGN =1.7 powerlaw spectrum... too soft!

Resolving the Hard X-ray Background (XMM and Chandra Deep Fields)

(Worsley et al. 2005)

The Cosmic X-ray Background and AGN Population Synthesis

Science Motivations for X-ray Surveys

- Cosmological history of accretion
 - AGN across L,z plane
 - the when, where & how of high-z SMBH
 - AGN contribution to re-ionization
 - tie-in to current local bulge/SMBH
- Study populations contributing to the CXRB
- X-ray properties of normal galaxies and fraction w/AGN
- Find high-z clusters to constrain Cosmology
- Study cosmic variance and clustering
- History of star formation
- Detect mass limits of stellar coronal emission
- Find isolated neutron stars...

X-ray Survey Advantages

- X-rays penetrate large columns of gas and dust (N_H~10²⁴ cm⁻² ~ your hand)
- Most X-ray sources are AGN (high selection efficiency).
- ~All AGN produce X-rays (high completeness).
- Surface density of X-ray-selected AGN exceeds optical AGN by 10-20x (Bauer et al 2004)
- X-rays sample the circumnuclear region (R<100*R_{gray})
- No strong z-dependence like optical

$$N_H \sim N_H / (1+z)^{2.6}$$

X-ray spectral information comes for 'free'.

X-ray Survey Bummers

- X-ray detectors are non-uniform
 - PSF size and flux sensitivity vary with off-axis angle
- Deep or wide X-ray surveys are expensive & time consuming
 - use serendipitous detections from archived observations
- Require multi-wavelength followup

Extragalactic X-ray Surveys

Deep Extragalactic X-ray Surveys

- Pencil-beam surveys probe early cosmic epochs
- Low-luminosity, more typical object types are detected
- Resolve largest possible fraction of CXRB
- Provide signpost data for future missions

Deep Extragalactic X-ray Surveys (>75ksec)

Table 1: Deep Extragalactic X-ray Surveys with ${\it Chandra}$ and ${\it XMM-Newton}$			
Survey	Max. Eff.	Solid Angle	Representative
Name	Exp. (ks)	$(\operatorname{arcmin}^{2})$	Reference or Note
Chandra			
Chandra Deep Field-North	1950	448	Alexander et al. (2003b)
Chandra Deep Field-South	940	391	Giacconi et al. (2002)
HRC Lockman Hole	300	900	PI: S.S. Murray
Extended CDF-S	250	900	PI: W.N. Brandt
Extended Groth Strip	200	1800	Nandra et al. (2005)
Lynx	185	286	Stern et al. (2002a)
LALA Cetus	174	428	Wang et al. (2004b)
LALA Boötes	172	346	Wang et al. (2004a)
SSA13	101	357	Barger et al. (2001a)
Abell 370	94	357	Barger et al. (2001b)
3C 295	92	274	D'Elia et al. (2004)
SSA22 "protocluster"	78	428	Cowie et al. (2002)
ELAIS N1+N2	75	586	Manners et al. (2003)
$XMM ext{-}Newton$			
Lockman Hole	770	1556	Hasinger (2004)
Chandra Deep Field-South	370	802	Streblyanska et al. (2004)
Chandra Deep Field-North	180	752	Miyaji et al. (2003)
13 hr Field	130	665	Page et al. (2003)
Subaru XMM-Newton Deep	100	4104	PI: M.G. Watson
ELAIS S1	100	1620	PI: F. Fiore
Groth-Westphal	81	727	Miyaji et al. (2004)
Marano Field	79	2140	Lamer et al. (2003)
COSMOS	75	7200	PI: G. Hasinger

Brandt 2005 ARAA

Chandra Deep Field North

Wide Extragalactic X-ray Surveys

- Amass rare source types and luminous high-z objects
- Allow for studies of clustering and cosmic variance
- Bridge flux gap between deep and all-sky surveys
- Still sufficiently deep that complete source classification is quite challenging

Wide Extragalactic X-ray Surveys

Chandra

XMM-Newton

- ChaMP (Green et al. 2004;
 Kim et al 2004)
- CYDER (Treister 2005)
- CLASXS (Lockman Hole; Steffen, Barger, Yang)
- XBootes/NDWFS (Murray, Jones, Kenter, Brand)
- SEXSI (Harrison, Helfand)

- HELLAS2XMM (Baldi, Fiore, Brusa)
- XMM/2dF (Georgakakis, Georgantopolous)
- XMM-SSC (Watson)
- XMM-LSS (Pierre)

ChaMP Field Distribution

- 130 Cycle 1&2 ACIS Fields: ~14 sq. deg
- Exposure times 2-190 ksec
- → 6000 X-ray sources

XBootes 126*5ksec Chandra Raster

9deg² also covered by NOAO $B_{w,}R,I$ Mosaic imaging to ~25^{th,} JHK to ~20th, Spitzer, VLA, Galex...

X-ray/Optical Matching

- Very sensitive to PSF size
- Match / multiple/ spurious fractions all depend on relative flux limits
- Demands visual inspection

X-ray/Optical Source Properties

REDSHIFT

0 - 0.5

0.5 - 1

1 -- 2

2 -- 6

Source Types

- 24 Fields
- 445 zs
- 52% BLAGN

Broad emission Line AGN (FWHM > 1000 km/s)

• 25% NELG

Narrow Emission Line Galaxy (FWHM<1000 km/s; W^e_λ>5 Å)

- 11% ALG (absorption line galaxy)
- 13% Stars
- 1% Clusters

from ChaMP - J. Silverman (MPE), P. Green (SAO), et Il

Basic AGN Types from X-ray Surveys

- Unobscured AGN
- Obscured AGN with clear optical/UV AGN signatures
- Optically faint X-ray sources
- XBONGs (X-ray Bright Optically Normal Galaxies)
- AGN unification is "broken" between optical (type1 and type2) and X-ray (unobscured and obscured)

X-ray AGN Comoving Space Density (0.3-8.0 keV)

Low luminosity AGN more prominent at z < 1

Cowie et al. 2003, Ueda et al. 2004, Fiore et al. 2004

First detection of a turnover in the space density of luminous QSOs at z > 3

Silverman et al. 2005

Space Density of X-ray Luminous QSOs

Combined 0.5-2keV Sample 1004 AGNs

ROSAT survey (Miyaji et al. 2000) Compilation of deep and shallow surveys: **690** AGN.

Only 7 QSOs with z > 3. Four were detected in the Lockman Hole (Lehmann et al. 2001)

Chandra

279 ChaMP + 43 CDF AGN 6 with log Lx > 44.5 and z > 3

Optical - scaled to match X-ray at z=2.5

Note: 25 Chandra fields reach similar depths to smooth over cosmic variance

X-ray Luminosity Function

$$\phi(L,z) = \frac{\mathrm{d}^2 N}{\mathrm{d} V \mathrm{d} L}(L,z)$$

 $1/V_a$ method

$$\phi_{1/V_a}(L,z) = rac{1}{\Delta \mathrm{log}L} \sum_{i=1}^N rac{1}{C(i)V_a(i)}$$

$$V_{
m a}=\int_{z_1}^{z_2}rac{{
m d}V_c}{{
m d}z}\,{
m d}z{
m d}\Omega$$

Identified fraction

0.3 < C(i) < 1.0

Brandt & Hasinger 2005, ARA&A; *LDDE* fit shown as dashed curve

Current & Future Projects

- Evolution of AGN X-ray properties
- Clusters from optical and X-ray images
- Lenses, pairs, jets
- Variability studies
- AGN-AGN and AGN-galaxy clustering...

O Done

The End